Respuesta :

Answer:

50.4 degrees

Step-by-step explanation:

Using sine rule

[tex]\frac {HI}{sin<G}=\frac {GI}{sin<H}=\frac {GH}{sin<I}[/tex]

Therefore, to find angle I

[tex]\frac {GI}{sin<H}=\frac {GH}{sin<I}[/tex]

Making angle I the subject of formula

[tex]I=sin^{-1}(\frac {GH sin<H}{GI})[/tex]

Substituting  GH = 6, GI = 7, and m∠H = 64

[tex]I=sin^{-1}(\frac {6 sin64}{7})=50.389363496250\approx 50.39^{\circ}[/tex]

Therefore, angle I to the nearest tenth will be 50.4 degrees