Respuesta :
Answer:
The correct simplified answer is [tex]\frac{1}{8} \left (\frac{x}{ y} \right )^{8}[/tex] or [tex]\frac{x^8}{81\cdot y^8}[/tex]
Step-by-step explanation:
Here we have the expression as
[tex]\left (\frac{(x^4)(y^{-5})}{3(x^2)(y^{-3})} \right )^{4}[/tex]
Tanisha's work
[tex]\left (\frac{(x^4)(y^{-5})}{3(x^2)(y^{-3})} \right )^{4} = \left (\frac{(x^2)(y^{-2})}{3} \right )^{4}[/tex]
Neal's work is
[tex]\left (\frac{(x^4)(y^{-5})}{3(x^2)(y^{-3})} \right )^{4} = \left (\frac{(x^{16})(y^{-20})}{3^4(x^8)(y^{-12})} \right )[/tex]
The correct simplified answer is [tex]\frac{x^8}{81\cdot y^8}[/tex].
which can also be expressed as
[tex]\frac{1}{8} \left (\frac{x}{ y} \right )^{8}[/tex]
Both form represent simplified forms of the original equation.