plz help again lol. it would be greatly appreciated

Answer:
4) [tex]log_6216=3[/tex]
5) [tex]log_3\frac{1}{9}=-2[/tex]
6) [tex]log_7x=3[/tex]
Step-by-step explanation:
When we have a problem of the form [tex]b^x=a[/tex] , the logarithmic equivalent would be: [tex]log_ba=x[/tex] .
4) Here, b = 6, a = 216, and x = 3. So: [tex]log_6216=3[/tex]
5) In this problem, b = 3, a = 1/9, and x = -2. Hence: [tex]log_3\frac{1}{9}=-2[/tex]
6) Finally, here, b = 7, a = x, and x = 3. So: [tex]log_7x=3[/tex]
Hope this helps!
Answer:
4) log6(216) = 3
5) log3(1/9) = -2
6) log7(x) = 3
Step-by-step explanation:
logb(a) = x
a = b^x
6³ = 216
log6(216) = 3
3^-2 = 1/9
log3(1/9) = -2
7³ = x
log7(x) = 3