Respuesta :

Answer:

4) [tex]log_6216=3[/tex]

5) [tex]log_3\frac{1}{9}=-2[/tex]

6) [tex]log_7x=3[/tex]

Step-by-step explanation:

When we have a problem of the form [tex]b^x=a[/tex] , the logarithmic equivalent would be: [tex]log_ba=x[/tex] .

4) Here, b = 6, a = 216, and x = 3. So: [tex]log_6216=3[/tex]

5) In this problem, b = 3, a = 1/9, and x = -2. Hence: [tex]log_3\frac{1}{9}=-2[/tex]

6) Finally, here, b = 7, a = x, and x = 3. So: [tex]log_7x=3[/tex]

Hope this helps!

Answer:

4) log6(216) = 3

5) log3(1/9) = -2

6) log7(x) = 3

Step-by-step explanation:

logb(a) = x

a = b^x

6³ = 216

log6(216) = 3

3^-2 = 1/9

log3(1/9) = -2

7³ = x

log7(x) = 3