5 single loop of copper wire, lying flat in a plane, has an area of 8.60cm2 and a resistance of 3.00. A uniform magnetic field points perpendicular to the plane of the loop. The field initially has a magnitude of .5 T, and the magnitude increases linearly to 3. 0 in a time of 1.10 s, what is the induced current in the loop of wire over this time? .652A

Respuesta :

Answer:

0.652 mA

Explanation:

According to Faraday's Law :

[tex]Emf = - \frac{d \phi}{dt}[/tex]

[tex]= \frac{- \delta \phi }{\delta \ t}[/tex]

[tex]|E| = \frac{A ( \delta B)}{\delta t}[/tex]

where ;

A = [tex]8.60*10^{-4}[/tex]

[tex]\delta B = 3.00 T - 0.5 T = 2.5 T[/tex]

[tex]|E| = \frac{8.60*10^{-4}*2.5}{1.10}[/tex]

[tex]|E| = 1.96*10^{-3}[/tex]

Induced current  I = [tex]\frac{|E|}{R}[/tex]

= [tex]\frac{1.96*10^{-3}}{3.0}[/tex]

= [tex]6.52*10^{-4} A[/tex]

= 0.652 mA

Thus, the induced current in the loop of wire over this time = 0.652 A

The induced current in the loop of wire is : 0.625 mA

Given data :

Area of 5 single loop of copper wire = 8.6 cm² = 8.6 * 10⁻⁴ m²

Resistance ( R )  = 3.00

Magnitude of field = 0.5 T

Time =  1.10 sec

According to  Faraday's law  [tex]Emf = - \frac{d\beta }{dt}[/tex] = [tex]\frac{-d\beta }{dt}[/tex]

Magnitude of E :   | E | = [tex]\frac{A(d\alpha) }{dt}[/tex] ----- ( 1 )

where : A = 8.6 * 10⁻⁴ m², [tex]d\alpha = 3 .00 T - 0.5 T = 2.5 T[/tex]

Input values into equation ( 1 )

| E | = 1.96 * 10⁻³

   

Final step :  Calculate the value of induced current

I ( induced current ) = [tex]\frac{|E|}{R}[/tex]  

                                 = ( 1.96 * 10⁻³ / 3 )  = 0.625 mA

Hence we can conclude that The induced current in the loop of wire is : 0.625 mA

Learn more : https://brainly.com/question/20077104