Answer:
diameter = 11 mm
Explanation:
given data
long = 10m
tensile load = 15 kN
total elongation = 8mm
yield stress is 345 MPa
factor of safety = 2.5
proportional limit of the steel = 240 MPa
solution
we get here diameter base on elongation
\delta l = [tex]\frac{PL}{AE}[/tex] ...............1
put here value and we will get
0.008 = [tex]\frac{15\times 10^3\times 10}{\frac{\pi }{4}d^2\times 207000}[/tex]
solve it we get
d = 10.74 mm = 11 mm
and
now we get here allowable diameter that is
[tex]\sigma max = \sigma au[/tex]
[tex]\frac{P}{A} = \frac{\sigma u }{FOS}[/tex]
[tex]\frac{15\times 10^3\times }{\frac{\pi }{4}d^2} = \frac{345\times 10^6}{2.5}[/tex]
solve it we get
d = 11.76 mm = 12 mm
so for safety purpose
diameter = 11 mm