Answer:
(a). Entropy change of refrigerant is = 0.7077 [tex]\frac{KJ}{K}[/tex]
(b). Entropy change of cooled space [tex]dS_{space} = - 0.6844[/tex] [tex]\frac{KJ}{K}[/tex]
(c). Total entropy change is dS = 0.0232 [tex]\frac{KJ}{K}[/tex]
Explanation:
Given data
Saturation pressure = 140 K pa
Saturation temperature from property table
[tex]T_{sat}[/tex] = - 18.77 °c = - 18.77 + 273 = 254.23 K
(a). Entropy change of refrigerant is given by
[tex]dS_{ref} = \frac{Q}{T_{sat}}[/tex]
Since heat absorbed by refrigerant Q = 180 KJ
[tex]dS = \frac{180}{254.23}[/tex]
dS = 0.7077 [tex]\frac{KJ}{K}[/tex]
(b). Entropy change of cooled space
[tex]dS_{space} = - \frac{Q}{T_{space}}[/tex]
[tex]T_{space}[/tex] = - 10 °c = 263 K
[tex]dS_{space} = - \frac{180}{263}[/tex]
[tex]dS_{space} = - 0.6844[/tex] [tex]\frac{KJ}{K}[/tex]
(c). Total entropy change is given by
[tex]dS = dS_{ref} + dS_{space}[/tex]
dS = 0.7077 - 0.6844
dS = 0.0232 [tex]\frac{KJ}{K}[/tex]
This is the value of total entropy change.