Answer:
[tex]7.908\times 10^{10}[/tex]
Step-by-step explanation:
Total number of mens=20
Total number of women=24
Number of pairs are to be chosen =5
We have to find the number of different ways can the 5 pairs be chosen.
5 Pairs included 5 women and 5 men.
Therefore, number of ways in which 5 pairs can be chosen=[tex]20C_5\times 24C_5\times 5![/tex]
Formula:[tex]nC_r=\frac{n!}{r!(n-r)!}[/tex]
Number of ways in which 5 pairs can be chosen=[tex]\frac{20!}{5!15!}\times \frac{24!}{5!19!}\times 5![/tex]
Number of ways in which 5 pairs can be chosen=[tex]7.908\times 10^{10}[/tex]