Find the temperature at which Kp = 42.0 for the reaction

H2(g) + I2(g) → 2HI(g)

[Given: at 25°C, for H2(g), ∆H°f = 0, S° = 131.0 J/mol·K; for I2(g), ∆H°f = 62.26 kJ/mol, S° = 260.6 J/mol·K; for HI(g), ∆H°f = 25.9 kJ/mol, S° = 206.3 J/mol·K; assume that ∆H° and ∆S° are independent of temperature.]

Respuesta :

Answer: Temperature for the given reaction is 1040 K (approx).

Explanation:

Formula for enthalpy change of a reaction is as follows.

     [tex]\Delta H_{rxn} = \Delta H_{products} - \Delta H_{reactants}[/tex]

For the given reaction equation,

     [tex]\Delta H_{rxn} = 2 \times \Delta H_{HI} - (\Delta H_{H_{2}} + \Delta H_{I_{2}})[/tex]  

Now, putting the given values into the above formula as follows.

    [tex]\Delta H_{rxn} = 2 \times \Delta H_{HI} - (\Delta H_{H_{2}} + \Delta H_{I_{2}})[/tex]  

   [tex]\Delta H_{rxn} = 2 \times 25.9 - (0 + 62.26)[/tex]  

                    = -10460 J/mol

Now, we will calculate the change in its entropy as follows.

           [tex]\Delta S = S_{products} - S_{reactants}[/tex]

                       = [tex]2 \times S_{HI} - (S_{H_{2}} + S_{I_{2}})[/tex]

                       = [tex]2 \times 206.3 - (131.0 + 260.6)[/tex]

                       = 21 J/mol

Also, we know that

         [tex]\Delta G = RT ln K_{p} = \Delta H_{rxn} - T\Delta S_{rxn}[/tex]

         [tex]-8.314 \times T \times ln(42) = -10460 - T \times 21[/tex]

                     T = 1036.7 K

                        = 1040 K

Therefore, we can conclude that temperature for the given reaction is 1040 K (approx).