Point PP is a distance d1d1 = 4.0 mm above a large sheet of metal that carries a current of 35 AA in the positive xx direction and a distance d2d2 = 3.0 mm below a very long wire that carries a current of 0.41 AA in the positive xx direction. If the magnetic field magnitude at P is zero, calculate the width of the metal sheet.

Respuesta :

Answer:

The width of the sheet is   [tex]w =0.8046m[/tex]

Explanation:

  From the question we are told that

             The distance of point P above a  large sheet of metal is [tex]D = 4.0mm =\frac{4}{1000} = 0.004m[/tex]

             The current on the large metal sheet  is  [tex]I =34A[/tex]

              The  distance of the the point P below a long wire [tex]d = 3.0mm = \frac{3}{1000} = 0.003m[/tex]

               The current on the long wire is  [tex]I_w = 0.41A[/tex]

                The magnetic field at  P is  [tex]B = 0T[/tex]

Generally magnetic field  of P long wire is mathematically represented as

                [tex]B_w = \frac{\mu_o I_w}{2\pi r}[/tex]

Generally magnetic field  of P large sheet of meta is mathematically represented as

              [tex]B_m = \frac{\mu_o K}{2}[/tex]

Where K is the current per unit width

 The total magnetic field at P is

                  [tex]\frac{\mu_o I_w}{2 \pi r} = \frac{\mu_o K}{2}[/tex]

Making K the subject of formula

                 [tex]K = \frac{2 I_w }{2 \pi r }[/tex]

 Substituting values

                   [tex]K = \frac{2 * 0.41 }{2 * 3.142 * (0.0030) }[/tex]

                        [tex]K = 43.4967 A/m[/tex]

Generally K is mathematically represented as

                [tex]K = \frac{I}{w}[/tex]

Where w is the width of the large sheet

Therefore the width  of the metal sheet   [tex]w = \frac{I}{K}[/tex]

                                                                         [tex]= \frac{35}{43.4967}[/tex]

                                                                         [tex]w =0.8046m[/tex]