Respuesta :
Answer:
[tex]T_{12 \ pm} = 360 \ K[/tex]
[tex]T_{3 \ pm} = 330 \ K[/tex]
[tex]T = 131\ K[/tex]
Explanation:
The power of sunlight at equator [tex]L_{sun}[/tex] is known to be = [tex]3.846*10^{26} \ W[/tex]
Distance = 1 Au = [tex]1.496*10^{11} \ m[/tex]
Thus; the power at equator = [tex]\frac{3.846*10^{26}}{4 \pi *(1.496*10^{11})^2}[/tex]
= 1367 W/m²
Now; at noon (sun overhead)
[tex]1367* \frac{70}{100}= 5.67*20^{-8}*T^4\\\\T^4 =\frac{956.9}{5.67*10^{-8}}\\\\T^4 = 1.687*10^{10}\\\\T_{12 \ pm} = 360 \ K[/tex]
At 3 pm (Sun 45 degrees from overhead);
[tex]1367* \frac{70}{100}*cos \ 45 = 5.67*20^{-8}*T^4\\\\T^4 =\frac{676.63}{5.67*10^{-8}}\\\\T^4 = 1.193*10^{10}\\\\T_{3 \ pm} = 330 \ K[/tex]
C) sunset and D) midnight.
We based our assumption on the notion that the incident angle at sunset and midnight be just below 90° ; for example . let say:
[tex]T_{6pm \ to \ 6 am} = 1367* \frac{70}{100}*cos 89 = \sigma T^4\\ \\T = 131\ K[/tex]