The function f (x )equals x cubed minus 2 is​ one-to-one. Find an equation for f Superscript negative 1 Baseline (x )​, the inverse function. f Superscript negative 1 Baseline (x )equals nothing

Respuesta :

Answer:

Inverse of given function [tex]f\left(x\right)=x^{3}-2[/tex] is [tex]f^{-1}\left(x\right)=\sqrt[3]{x+2}[/tex]

Step-by-step explanation:

Given that [tex]f\left(x\right)=x^{3}-2[/tex] and it is one to one function.

Following are the steps to find the inverse of the above function.

Step 1: Replace [tex]f\left(x\right)[/tex] with y

[tex]y=x^{3}-2[/tex]

Step 2: Interchange x and y.

[tex]x=y^{3}-2[/tex]

Step 3: Solve for y.

Rewriting the equation in step 2,

[tex]y^{3}-2=x[/tex]

Add 2 on both sides,

[tex]y^{3}-2+2=x+2[/tex]

[tex]y^{3}=x+2[/tex]

Taking cube root on both sides,

[tex]\sqrt[3]{y^{3}}=\sqrt[3]{x+2}[/tex]

Applying radical rule,

[tex]\sqrt[n]{x^{m}}=x^{\frac{m}{n}}[/tex]

So,

[tex]\left(y^{3}\right)^{\frac{1}{3}}=\sqrt[3]{x+2}[/tex]

Simplifying,

[tex]y=\sqrt[3]{x+2}[/tex]

The resulting equation is inverse function of the given function.

[tex]\therefore f^{-1}\left(x\right)=\sqrt[3]{x+2}[/tex]

Answer:

a

Step-by-step explanation: