Given the first term and the common ratio of a geometric sequence find the explicit formula.

31.) a1 = -1, r = -2
(1 is a lowered power to a)

33.) a1 = 4, r = -4
(1 is a lowered power to a)

Respuesta :

A geometric sequence is generated by multiplying the first term in the sequence, [tex]a_1[/tex], several times by a fixed scalar [tex]r[/tex]. So

[tex]a_2=a_1r[/tex]

[tex]a_3=a_2r=a_1r^2[/tex]

[tex]a_4=a_3r=a_1r^3[/tex]

and so on, down to

[tex]a_n=a_{n-1}r=a_{n-2}r^2=\cdots=a_1r^{n-1}[/tex]

Using the result above, the sequences you're interested in are

31) [tex]a_n=-(-2)^{n-1}[/tex]

33) [tex]a_n=4(-4)^{n-1}[/tex]

We can rewrite these results to make them slightly cleaner.

[tex]-(-2)^{n-1}=-(-1)^{n-1}2^{n-1}=(-1)^n2^{n-1}[/tex]

[tex]4(-4)^{n-1}=4(-1)^{n-1}4^{n-1}=(-1)^{n-1}4^n[/tex]