The base radius of a cone is expanding at the rate of 1in/min while its height is shrinking at the rate of 3in/min. How fast is the volume of this cone changing at the moment when the base radius is 30 in and the height is 40in?

Respuesta :

Answer:

The volume of the cone is shrinking at the rate [tex]100\pi[/tex] cubic inches / min.

Step-by-step explanation:

Formula:

  • [tex]\frac{d}{dx}(uv)=v\frac{du}{dt}+u\frac{dv}{dt}[/tex]
  • [tex]\frac{d}{dx}(u^n)=nu^{n-1}\frac{du}{dx}[/tex]

Given that,

The base of a cone is expanding at the rate of 1 in / min while it height is shrinking at the rate  3 in/ min.

i.e  

[tex]\frac{dr}{dt}=1 \ in/min[/tex]  

         and

 [tex]\frac{dh}{dt}= -3 \ in/min[/tex]  [ since height is shirking]

The volume of a cone is

[tex]V=\frac13 \pi r^2h[/tex]

Differentiating with respect to t

[tex]\frac{dV}{dt} =\frac13\pi \{h \frac{d}{dt}(r^2)+r^2\frac{d}{dt}(h)\}[/tex]

[tex]\Rightarrow\frac{dV}{dt}=\frac13\pi (h.2r \frac{dr}{dt}+r^2\frac{dh}{dt})[/tex]

Now putting [tex]\frac{dr}{dt}=1 \ in/min[/tex]    and  [tex]\frac{dh}{dt}= -3 \ in/min[/tex]

[tex]\frac{dV}{dt}=\frac13\pi \{h.2r (1)+r^2(-3)\}[/tex]

[tex]\Rightarrow \frac{dV}{dt}=\frac13\pi (2hr -3r^2)[/tex]

To find the rate of changing volume at the moment when base radius is 30 in and the height is 40 in, we need to put r= 30 in and h=40 in.

[tex]\frac{dV}{dt}|_{r=30,h=40}=\frac13\pi \{2.40.30 -3(30)^2\}[/tex]

                     [tex]=-100\pi[/tex] cubic inches / min

The volume of the cone is shrinking at the rate [tex]100\pi[/tex] cubic inches / min.