contestada

An object weighing 302 N in air is immersed in water after being tied to a string connected to a balance. The scale now reads 268 N . Immersed in oil, the object appears to weigh 276 N . Find the density of the object. Answer in units of kg/m 3 .

Respuesta :

Answer:

The density of the object [tex]\rho =[/tex] 8883 [tex]\frac{Kg}{m^{3} }[/tex]

Explanation:

Given data

[tex]F_{air}[/tex] = 302 N

[tex]F_{water}[/tex] = 268 N

[tex]F_{oil}[/tex] = 276 N

Buoyant force in water on the body is given by

[tex]F_B =[/tex] [tex]F_{air}[/tex] - [tex]F_{water}[/tex]

[tex]F_B =[/tex] 302 - 268

[tex]F_B =[/tex] 34  N

Volume of the object

[tex]V = \frac{F_B}{\rho g}[/tex]

[tex]V = \frac{34}{(1000)(9.81)}[/tex]

V = 3.465 × [tex]10^{-3}[/tex]

Mass of the object

[tex]m = \frac{F_{air} }{g}[/tex]

[tex]m = \frac{302}{9.81}[/tex]

m = 30.78 N

Now density of the body

[tex]\rho = \frac{m}{V}[/tex]

[tex]\rho = \frac{30.78}{3.465 (10^{-3} )}[/tex]

[tex]\rho =[/tex] 8883 [tex]\frac{Kg}{m^{3} }[/tex]

Therefore the density of the object [tex]\rho =[/tex] 8883 [tex]\frac{Kg}{m^{3} }[/tex]