Respuesta :
Answer:
5.8 kg
Explanation:
We are given that
Force,F=40 N
[tex]\theta=30^{\circ}[/tex]
Acceleration,a=[tex]2 m/s^2[/tex]
We have to find the mass of block.
[tex]F_{net}=ma[/tex]
[tex]F-mgsin\theta=ma[/tex]
[tex]F=mgsin\theta+ma=m(gsin\theta+a)[/tex]
[tex]40=m(9.8sin30+2)[/tex]
Where
[tex]g=9.8m/s^2[/tex]
[tex]40=6.9m[/tex]
[tex]m=\frac{40}{6.9}=5.8 kg[/tex]
Answer:
[tex]m=5.797\ kg[/tex]
Explanation:
GIVEN:
applied force up the inclined plane, [tex]F=40\ N[/tex]
angle of the plank from the horizontal, [tex]\theta=30^{\circ}[/tex]
acceleration of the body up the plane, [tex]a=2\ m.s^{-2}[/tex]
Now from the schematic we balance the forces:
[tex]F-mg\sin\theta=m.a[/tex]
[tex]F=m(g\sin\theta +a)[/tex]
[tex]40=m(9.8\times0.5+2)[/tex]
[tex]m=5.797\ kg[/tex]
