Answer:
Expected duration between when orders begin and production begins = 12.55 days
Step-by-step explanation:
Expected duration between when an order is received and the start of production:
Average production time for a bag, P = 1.8
Standard deviation, [tex]\sigma_{p} = 2.7 days[/tex]
Number of employees, m = 2
Larry expects one customer order a day, a = 1
Coefficient of variation of arrival, [tex]v_{a} = 1[/tex]
Coefficient of variation of processing, [tex]v_{p} = \frac{\sigma_{p} }{P}[/tex]
[tex]v_{p} = \frac{2.7}{1.8} \\v_{p} = 1.5[/tex]
Utilization, [tex]v = \frac{p}{ma}[/tex]
[tex]v = \frac{1.8}{2*1}[/tex]
[tex]v = 0.9[/tex]
Expected time of wait = [tex](\frac{P}{m} * \frac{v^{\sqrt{2(m+1)}-1 } }{1 -v} )* (\frac{v_{a} ^{2}+ v_{p} ^{2} }{2} )[/tex]
Expected time of wait = [tex](\frac{1.8}{2} * \frac{0.9^{\sqrt{2(2+1)}-1 } }{1 -0.9} )* (\frac{1 ^{2} + 1.5 ^{2} }{2} )[/tex]
Expected time of wait = 12.55 days