A solid is formed by adjoining two hemispheres to the ends of a right circular cylinder. An industrial tank of this shape must have a volume of 4640 cubic feet. The hemispherical ends cost twice as much per square foot of surface area as the sides. Find the dimensions that will minimize the cost. (Round your answers to three decimal places.)

Respuesta :

Answer:

Radius =6.518 feet

Height = 26.074 feet

Step-by-step explanation:

The Volume of the Solid formed  = Volume of the two Hemisphere + Volume of the Cylinder

Volume of a Hemisphere  [tex]=\frac{2}{3}\pi r^3[/tex]

Volume of a Cylinder [tex]=\pi r^2 h[/tex]

Therefore:

The Volume of the Solid formed

[tex]=2(\frac{2}{3}\pi r^3)+\pi r^2 h\\\frac{4}{3}\pi r^3+\pi r^2 h=4640\\\pi r^2(\frac{4r}{3}+ h)=4640\\\frac{4r}{3}+ h =\frac{4640}{\pi r^2} \\h=\frac{4640}{\pi r^2}-\frac{4r}{3}[/tex]

Area of the Hemisphere =[tex]2\pi r^2[/tex]

Curved Surface Area of the Cylinder =[tex]2\pi rh[/tex]

Total Surface Area=

[tex]2\pi r^2+2\pi r^2+2\pi rh\\=4\pi r^2+2\pi rh[/tex]

Cost of the Hemispherical Ends  = 2 X  Cost of the surface area of the sides.

Therefore total Cost, C

[tex]=2(4\pi r^2)+2\pi rh\\C=8\pi r^2+2\pi rh[/tex]

Recall: [tex]h=\frac{4640}{\pi r^2}-\frac{4r}{3}[/tex]

Therefore:

[tex]C=8\pi r^2+2\pi r(\frac{4640}{\pi r^2}-\frac{4r}{3})\\C=8\pi r^2+\frac{9280}{r}-\frac{8\pi r^2}{3}\\C=\frac{9280}{r}+\frac{24\pi r^2-8\pi r^2}{3}\\C=\frac{9280}{r}+\frac{16\pi r^2}{3}\\C=\frac{27840+16\pi r^3}{3r}[/tex]

The minimum cost occurs at the point where the derivative equals zero.

[tex]C^{'}=\frac{-27840+32\pi r^3}{3r^2}[/tex]

[tex]When \:C^{'}=0[/tex]

[tex]-27840+32\pi r^3=0\\27840=32\pi r^3\\r^3=27840 \div 32\pi=276.9296\\r=\sqrt[3]{276.9296} =6.518[/tex]

Recall:

[tex]h=\frac{4640}{\pi r^2}-\frac{4r}{3}\\h=\frac{4640}{\pi*6.518^2}-\frac{4*6.518}{3}\\h=26.074 feet[/tex]

Therefore, the dimensions that will minimize the cost are:

Radius =6.518 feet

Height = 26.074 feet

The dimensions that minimize the cost of building the tank are [tex]r\approx 6.5ft \text{ and } h \approx 26.0ft[/tex] .

Let

[tex]h=\text{the height of the cylindrical sides}\\r=\text{the radius of the hemispheres and the cylindrical sides}[/tex]

and

[tex]T=\text{the total cost}\\u_c=\text{the unit cost of building the cylindrical sides}\\u_h=\text{the unit cost of building the hemispherical surfaces}[/tex]

and

[tex]S_c=\text{the surface area of the cylinder}\\=2\pi rh\\\\S_h=\text{the total surface area of both hemispheres}\\=4\pi r^2[/tex]

Therefore,

[tex]T=u_cSc+u_hSh[/tex]

From the question

[tex]u_h=2u_c[/tex]

The total cost becomes

[tex]T=u_cSc+2u_cSh\\=2u_c \pi rh+8u_c \pi r^2[/tex]

We need to eliminate [tex]h[/tex]. The volume from the question gives a way out

[tex]4640=\frac{4}{3}\pi r^3 +\pi r^2h\\\\h=\frac{4640}{\pi r^2}-\frac{4r}{3}[/tex]

substitute into the formula for total cost gives, after simplifying

[tex]T=\frac{16u_c\pi r^2}{3}+\frac{9280u_c}{r^2}[/tex]

differentiating with respect to [tex]r[/tex], we get

[tex]\frac{dT}{dr}=\frac{32}{3}u_c\pi r-\frac{9280u_c}{r^2}[/tex]

at extrema

[tex]\frac{dT}{dr}=0\\\\\implies \frac{32}{3}u_c\pi r=\frac{9280u_c}{r^2}\\\\r=\sqrt[3]{\frac{870}{\pi}}\approx 6.5ft[/tex]

To confirm that [tex]r[/tex] is a minimum value, carry out the second derivative test

[tex]\frac{d^2T}{dr^2}=\frac{32u_c\pi}{3}+\frac{18560}{r^3}[/tex]

substituting [tex]r=\sqrt[3]{\frac{870}{\pi}}[/tex], we get that [tex]\frac{d^2T}{dr^2}[/tex] > [tex]0[/tex], confirming that minimum value

To find [tex]h[/tex], recall that

[tex]h=\frac{4640}{\pi r^2}-\frac{4r}{3}[/tex]

substituting [tex]r[/tex], we get [tex]h\approx 26.0ft[/tex] as the corresponding minimum height

Therefore, [tex]r\approx 6.5ft \text{ and } h \approx 26.0ft[/tex] minimize the total cost of building the tank.

Learn more about minimizing dimensions to reduce costs here: https://brainly.com/question/19053049