Recrystallization is a thermally activated process. As such we can take a look at a series of temperatures to see the fraction of recrystallized material. Please determine the activation energy for the recrystallization process using values of the 50% recrystallized portion at each temperature.

Respuesta :

Complete Question

Re crystallization is a thermally activated process. As such, can be characterized by the Arrhenius expression (Equation 1). As a first approximation we can treat  [tex] t^{-1}_R [/tex] where [tex] t_R [/tex] is the time necessary to fully recrystallize  the micro structure. For a 50% cold-worked aluminum alloy,  t_R is 100 hours at 250° C  and 10 hours at 280°C .Calculate the activation energy for the Re crystallization  process  

Equation 1

           [tex] rate = Ce^{-Q/RT} [/tex]

Answer:

The Activation energy is   [tex] Q = 1.85 *10^{5} J/mol[/tex]

Explanation:

From the question we are given the Arrhenius expression for the growth rate(Z) as

                    [tex] Z = Ce^{-Q/RT} [/tex]

Where    Q is the activation energy

              C  is known as the pre-exponential constant

               R   is the universal gas constant

                T is the absolute temperature

From the question according to the first approximation the  rate is inverse of time to fully recrystallize the micro structure(t_R)

   We are told that at 250°C that [tex]  t_R[/tex] = 100 hours

        Now substituting into the  Arrhenius expression

                         [tex] Z = Ce^{-Q/RT} [/tex]

            [tex]\frac{1}{100h}   = Ce^{-Q/R(250+273)K}  [/tex]

          [tex] 0.010h^{-1} = Ce^{-Q/R(523K)} [/tex] -----(2)

 We are told that at 280°C that [tex]  t_R[/tex] = 10 hours        

Now substituting into the  Arrhenius expression                

      [tex]\frac{1}{10h}   = Ce^{-Q/R(280+273)K}  [/tex]    

          [tex] 0.10h^{-1} = Ce^{-Q/R(553K)} [/tex] ----(3)

Dividing the second equation by the first one

             [tex]\frac{0.010}{0.10h} = \frac{Ce^{-Q/R(523K)}}{ Ce^{-Q/R(553K)}}  [/tex]

           [tex] ln (0.01)   = \frac{-Q (1/523K)- (1/553K)}{R} [/tex]

           [tex]    Q = \frac{Rln(0.10)}{(1/523K) - (1/553K)}[/tex]

Substituting [tex]  8.314 J/mol K [/tex] for R

             [tex]  Q = \frac{(8.314 )ln(0.10)}{(1/523K) - (1/553K)}   [/tex]

             [tex] Q = 1.85 *10^{5} J/mol[/tex]