Answer:
Confidence level is (380.7133, 533.2867)
Step-by-step explanation:
Responses in number of tongue flicks per 20 minutes of lizards, are: 727,217, 268, 438, 625, 319, 200, 591, 574, 727, 693, 336, 302, 761, 268, 353, 370
n = 17
Mean (μ) is:
[tex]\mu=\frac{{\Sigma}x}{n} = \frac{727+217+ 268+ 438+ 625+ 319+ 200+ 591+ 574+ 727+ 693+ 336+ 302+ 761+ 268+ 353+ 370}{17} = 439.3529[/tex]
Standard deviation (σ) is:
[tex]\sigma=\sqrt{\frac{\Sigma(x-\mu^2)}{n} } =\sqrt{\frac{(727-457)^2+(217-457)^2+...+(370-457)^2}{17} } =191.2[/tex]
The confidence interval (c) = 90% = 0.9
[tex]\alpha=1-0.9=0.1\\\frac{\alpha }{2} = 0.05\\Z_{\frac{\alpha }{2} }=1.64[/tex]
Margin of error (e) = [tex]=Z_{\frac{\alpha}{2} }*\frac{\sigma}{\sqrt{n} }=1.64*\frac{191.2}{\sqrt{17} }=76.2867[/tex]
Confidence level = μ ± e = 457 ± 76.2867 = (380.7133, 533.2867)