Convert the integral below to polar coordinates and evaluate the integral.

Lim(0→4/√2) ∫ Lim(y→√(16−y2)) ∫ xy dxdy

Instructions:
Enter the limits of integration and evaluate the integral to find the volume.

Respuesta :

Answer:

[tex]\int\limits_{0}^{4/\sqrt{2}}\int\limits_{y}^{\sqrt{16-y^2}} xy \, dxdy = \int\limits_{0}^{\pi/4} \, \int\limits_{0}^{4} r^3 cos(\theta)\sin(\theta) \,\, drd\theta = 16[/tex]

Step-by-step explanation:

We are trying to evaluate this integral.

[tex]\int\limits_{0}^{4/\sqrt{2}}\,\,\int\limits_{y}^{\sqrt{16-y^2}} xy \,\,dxdy[/tex]

The first thing that we have to do is understand this region in the plane.

[tex]\{ (x,y) \in \mathbb{R} : 0\leq y \leq \frac{4}{\sqrt{2}} \,\, , y \leq x \leq \, \sqrt{16-y^2} \}[/tex]

If you graph it looks something like the photo I join.

Now we need to describe that same region in polar coordinates.

That same region in polar coordinates would be

[tex]\{ (r,\theta) : \,\, 0 \leq \theta \leq \frac{\pi}{4} \,\,\, 0\leq r \leq 4 \}[/tex]

Now remember that when we do the polar transformation we use the following formula

[tex]\int\limits_{a}^{b} \, \int\limits_{c}^{d} f(x,y) \,dxdy = \int\limits_{\theta_1}^{\theta_2} \, \int\limits_{r_1}^{r_2} r* f(rcos(\theta),rsin(\theta)) \,drd\theta[/tex]

Then our integral would be

[tex]\int\limits_{0}^{4/\sqrt{2}}\int\limits_{y}^{\sqrt{16-y^2}} xy \, dxdy = \int\limits_{0}^{\pi/4} \, \int\limits_{0}^{4} r^3 cos(\theta)\sin(\theta) \,\, drd\theta = 16[/tex]

Ver imagen cdchavezq