contestada

The longitudinal displacement of a mass element in a medium as a sound wave passes through it is given by s = sm cos (kx – ωt). Consider a sound wave of frequency 384 Hz and wavelength 0.55 m. If sm = 14 µm, what is the displacement of an element of air located at x = 2.4 m at time t = 6.7 ms?

Respuesta :

Answer:

The longitudinal displacement is 1.373x10⁻⁵m

Explanation:

Given:

f = 384 Hz

λ = 0.55 m

x = 2.4 m

t = 6.7 ms = 6.7x10⁻³s

sm = 14 µm = 14x10⁻⁶m

According the question, the displacement is:

[tex]s=s_{m} cos(kx-wt)[/tex]

But:

[tex]k=\frac{2\pi }{\lambda } =\frac{2\pi }{0.55} =11.42[/tex]

[tex]w=2\pi f=2\pi *384=2412.74[/tex]

Replacing:

[tex]s=14x10^{-6} cos(11.42x-2412.74t)\\s=14x10^{-6} cos((11.42*2.4)-(2412.74*6.7x10^{-3}))\\ s=1.373x10^{-5} m[/tex]