In ΔABC, m∠A = 90°, m∠C = 20°, BC ≈ 12 cm, and AB ≈ 4.1 cm. Also, ΔABC ∼ ΔDEF and EF = 6 cm. Use this information for Items 1–6. Round to the nearest tenth of a unit if necessary.

Respuesta :

Answer:

Angle F = m∠C = 20°

Angle E = m∠B = 70°

AC = 11.3 cm

DF = 5.6 cm

DE = 2.0 cm

Explanation:

the triangle is right angle triangle

 I \C

20

 I    \

 I   \12 cm

 I           \

AI_4.1cm__\B the triangle is right angle triangle

 I \F

 I    \

 I   \6cm

 I           \

DI_______\E

AC will be calculated by using pythagorean theorem

AC ^2 = BC^2 - AB^2

AC^2 = 127.19

AC = 11.3 cm

To calculate DF, we will use similarity method

AC/BC = DF/EF

11.3/12 = DF/6

DF = 5.6 cm

We will use the same similarity method to calculate DE

AC/AB = DF/DE

11.3/4.1 = 5.6/DE

DE = 2.0 cm

m∠B = 90 - 20 = 70

Therefore m∠B = 70°

m∠E = 70°, same as m∠B = 70°

Angle F = m∠C = 20°

The corresponding angles and corresponding sides are shown below,

                  [tex]\angle A=\angle D=90\\\\\angle B=\angle E=70\\\\\angle C=\angle F=20[/tex]      and [tex]DE=2.05cm, EF=6cm[/tex]

Similar triangles:

It is given that, ΔABC ∼ ΔDEF

When two triangles are similar, Then, corresponding angles are equal and corresponding sides are in equal proportion.

So that,     [tex]\frac{AB}{DE}=\frac{BC}{EF} =\frac{AC}{DF}[/tex]

                  [tex]\angle A=\angle D\\\\\angle B=\angle E\\\\\angle C=\angle F[/tex]

Given that, m ∠A = 90°, m ∠C = 20°, BC ≈ 12 cm, AB ≈ 4.1 cm and

EF =6cm.

            [tex]\angle A=\angle D=90\\\\\angle B=\angle E=70\\\\\angle C=\angle F=20[/tex]

Ratio of corresponding sides are,

                     [tex]\frac{AB}{DE}=\frac{BC}{EF} \\\\\frac{4.1}{DE}=\frac{12}{6}\\ \\ DE=2.05cm[/tex]

Hence, the corresponding angles and corresponding sides are shown below,

                  [tex]\angle A=\angle D=90\\\\\angle B=\angle E=70\\\\\angle C=\angle F=20[/tex]      and [tex]DE=2.05cm, EF=6cm[/tex]

Learn more about the similar triangle here:

https://brainly.com/question/2644832