Answer:
[tex]m_{CaCO_3}=1.28x10^{-3}gCaCO_3[/tex]
Explanation:
Hello,
In this case, for the first titration, the molarity of the MnSO₄ is:
[tex]M_{MnSO_4}=\frac{0.435g*\frac{1mol}{151g} }{0.470L}=6.13x10^{-3}M[/tex]
Now, the moles that are neutralized by the EDTA for the 45.50-mL aliquot are:
[tex]n_{MnSO_4}=6.13x10^{-3}\frac{mol}{L} *0.0465L=2.85x10^{-4}mol[/tex]
In such a way, those moles equals the EDTA moles based on the titration main equation:
[tex]n_{MnSO_4}=n_{EDTA}[/tex]
Next, the concentration of the EDTA 41.9-mL solution is:
[tex]M_{EDTA}=\frac{2.85x10^{-4}mol}{0.0419L}=6.80x10^{-3}M[/tex]
Afterwards, for the second titration, the moles of EDTA that equal the neutralized grams of calcium carbonate are:
[tex]n_{EDTA}^{2^{nd} titration}=6.80x10^{-3}\frac{mol}{L} *0.00188L=1.28x10^{-5}mol[/tex]
Finally, the grams of calcium carbonate turn out:
[tex]n_{CaCO_3}=n_{EDTA}^{2^{nd}titration}=1.28x10^{-5}mol\\m_{CaCO_3}=1.28x10^{-5}mol*\frac{100.09g}{1mol} \\m_{CaCO_3}=1.28x10^{-3}gCaCO_3[/tex]
Best regards.