An initial investment of $1000 is deposited in an account with a 1.2%
interest rate, compounded annually. In how many years will the
account reach $1500?

Respuesta :

34 years will the account reach $1500, if An initial investment of $1000 is deposited in an account with a 1.2%  interest rate, compounded annually.

Step-by-step explanation:

The given is,

                     Initial investment of $1000

                     Interest rate 1.2%, compounded annually

                     Future amount $1500

Step:1

           Formula to calculate the future amount with an interest rate of compounded annually,

                                 [tex]F=P(1+\frac{r}{n} )^{nt}[/tex]............................(1)

           Where,

                F - Future worth amount

                P - Initial investment

                 r - Rate of interest

                n - No.of compounding in a year

                 t - No.of years

          From given,

                   F = $1500

                  P = $1000

                   r = 1.2%

                  n = 1 (compounded annually)

          Equation (1) becomes,

                          [tex]1500=1000(1+\frac{0.012}{1} )^{(1)(t)}[/tex]

                           [tex]\frac{1500}{1000} =(1+\frac{0.012}{1} )^{(t)}[/tex]

                             [tex]1.5 =(1+\frac{0.012}{1} )^{(t)}[/tex]

                             [tex]1.5 =(1+0.012 )^{(t)}[/tex]

                             [tex]1.5 =(1.012 )^{(t)}[/tex]

         Take log on both sides,

                         [tex]log 1.5 = {(t)} log (1.012 )[/tex]

         Substitutes log values,

                        0.17609126 =( t ) 0.0051805  

                                          [tex]t = \frac{0.17609126}{0.0051805}[/tex]

                                           t = 33.99

                                          t ≅ 34 years

Result:

        34 years will the account reach $1500, if An initial investment of $1000 is deposited in an account with a 1.2%  interest rate, compounded annually.