A box of volume 180 m3 with square bottom and no top is constructed out of two different materials. The cost of the bottom is $40/m2 and the cost of the sides is $30/m2 . Find the dimensions of the box that minimize total cost. (Let s denote the length of the side of the square bottom of the box and h denote the height of the box.)

Respuesta :

Answer:

Side of square bottom=6.46 m

Height of box=4.31 m

Step-by-step explanation:

Let s be the side bottom

Height of box=h

Volume of box=[tex]180m^3[/tex]

Volume of box=[tex]lbh=s^2h[/tex]

[tex]s^2h=180[/tex]

[tex]h=\frac{180}{s^2}[/tex]

Cost of bottom=$40 per square  m

Cost of sides =$30 per square  m

Total cost=[tex]C=40s^2+30(4sh)[/tex]

[tex]C=40s^2+120s\times \frac{180}{s^2}[/tex]

[tex]C(s)=40s^2+\frac{21600}{s}[/tex]

Differentiate w.r.t s

[tex]C'(s)=80s-\frac{21600}{s^2}[/tex]

[tex]C'(s)=0[/tex]

[tex]80s-\frac{21600}{s^2}=0[/tex]

[tex]80s=\frac{21600}{s^2}[/tex]

[tex]s^3=\frac{21600}{80}=270[/tex]

[tex]s=(270)^{\frac{1}{3}}=6.46[/tex]

Again,differentiate w.r.t s

[tex]C''(s)=80+\frac{43200}{s^3}[/tex]

Substitute s=6.46

[tex]C''(6.46)=80+\frac{43200}{(6.46)^3}=240.2>0[/tex]

Hence, the cost is minimum at s=6.46

[tex]h=\frac{180}{s^2}=\frac{180}{(6.46)^2}=4.31[/tex]

Side of square bottom=6.46 m

Height of box=4.31 m