Answer:
[tex]ln(x) = log(7) + \frac{x-7}{7} - \frac{(x-7)^2}{98} + \frac{(x-7)^3}{1029} - \frac{(x-7)^4}{9604} + .....[/tex]
Step-by-step explanation:
Remember that the general formula for Taylor series is centered around [tex]a[/tex]
is given by
[tex]f(x) = \sum\limits_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k[/tex]
For this case we have that [tex]a = 7 , f(x) = ln(x)[/tex]. Therefore remember that
[tex]f(x)=ln(x)\\f'(x) = \frac{1}{x}\\f^{(2)}(x) = -\frac{1}{x^2}\\f^{(3)}(x) = \frac{2}{x^3}\\......[/tex]
Therefore
[tex]ln(x) = log(7) + \frac{x-7}{7} - \frac{(x-7)^2}{98} + \frac{(x-7)^3}{1029} - \frac{(x-7)^4}{9604} + .....[/tex]