Answer:
Angular velocity [tex]\omega =[/tex] 78.5 [tex]\frac{rad}{s}[/tex]
The value of liner speed of a point on the tip of the fan blade V = 16 [tex]\frac{m}{s}[/tex]
Explanation:
Given data
N = 750 R.P.M
D = 16 in = 0.4064 m
R = 0.2032 m
Angular velocity of a fan blade is given by
[tex]\omega = \frac{2 \pi N}{60}[/tex]
Put all the values in above formula we get
[tex]\omega = \frac{2 (3.14)(750)}{60}[/tex]
[tex]\omega =[/tex] 78.5 [tex]\frac{rad}{s}[/tex]
The linear speed of a point on the tip of the fan blade is given by
V = R [tex]\omega[/tex]
V = 0.2032 × 78.5
V = 16 [tex]\frac{m}{s}[/tex]
This is the value of liner speed.