The blades on a fan rotate at 750 revolutions per minute and have a diameter of 16 inches. Find the angular velocity of a fan blade and the linear speed of a point on the tip of the fan blade. Use 3.1416 as the value of pi.

Respuesta :

Answer:

Angular velocity [tex]\omega =[/tex] 78.5 [tex]\frac{rad}{s}[/tex]

The value of liner speed of a point on the tip of the fan blade V = 16 [tex]\frac{m}{s}[/tex]

Explanation:

Given data

N = 750 R.P.M

D = 16 in = 0.4064 m

R = 0.2032 m

Angular velocity of a fan blade is given by

[tex]\omega = \frac{2 \pi N}{60}[/tex]

Put all the values in above formula we get

[tex]\omega = \frac{2 (3.14)(750)}{60}[/tex]

[tex]\omega =[/tex] 78.5 [tex]\frac{rad}{s}[/tex]

The linear speed of a point on the tip of the fan blade is given by

V = R [tex]\omega[/tex]

V = 0.2032 × 78.5

V = 16 [tex]\frac{m}{s}[/tex]

This is the value of liner speed.