Answer:
[tex]\S^2_p =\frac{(n_1-1)S^2_1 +(n_2 -1)S^2_2}{n_1 +n_2 -2}[/tex]
And replacing we got:
[tex]\S^2_p =\frac{(18-1)3^2 +(17 -1)2^2}{18 +17 -2} = 6.576[/tex]
Step-by-step explanation:
Data given
For this case we have the following info given:
[tex]n_1 = 18[/tex] represent the random sample size of men
[tex]n_2 = 17[/tex] represent the random sample size of women
[tex]\bar X_1 = 70[/tex] represent the average for men
[tex]\bar X_2 = 6[/tex] represent the average for women
[tex]s_1 = 3[/tex] represent the sample deviation for men
[tex]s_2 = 2[/tex] represent the sample deviation for women
Solution to the problem
The pooled variance is given by this formula:
[tex]\S^2_p =\frac{(n_1-1)S^2_1 +(n_2 -1)S^2_2}{n_1 +n_2 -2}[/tex]
And replacing we got:
[tex]\S^2_p =\frac{(18-1)3^2 +(17 -1)2^2}{18 +17 -2} = 6.576[/tex]
And the pooled sample deviation would be:
[tex] S_p = 2.564[/tex]