Answer:
[tex]\frac{1}{x-1} = \sum\limits_{k=0}^{\infty} \frac{1}{25^{k+1}} (24-x)^k[/tex]
Step-by-step explanation:
First remember that
[tex]\frac{1}{1-x} = \sum\limits_{k=0}^{\infty} x^k\\[/tex]
We want to manipulate that sum in order for that to be centered around x=24.
So we say
[tex]\frac{1}{x-1} = \frac{1}{1+x+24-24} = \frac{1}{25-(24-x)} = \frac{1}{25(1-\frac{(24-x)}{25})}[/tex]
[tex]= \frac{1}{25} \sum\limits_{k=0}^{\infty} (\frac{24-x}{25})^k = \sum\limits_{k=0}^{\infty} \frac{1}{25^{k+1}} (24-x)^k[/tex]