Respuesta :
Answer : The equilibrium [tex]SO_2[/tex] pressure is, [tex]3.93\times 10^{-5}torr[/tex]
Explanation :
The given balanced chemical reaction is,
[tex]SO_2(g)+2H_2S(g)\rightleftharpoons 3S(s)+2H_2O(g)[/tex]
First we have to calculate the standard free energy of reaction [tex](\Delta G^o)[/tex].
[tex]\Delta G^o=G_f_{product}-G_f_{reactant}[/tex]
[tex]\Delta G^o=[n_{S(s)}\times \Delta G_f^0_{(S(s))}+n_{H_2O(g)}\times \Delta G_f^0_{(H_2O(g))}]-[n_{SO_2(g)}\times \Delta G_f^0_{(SO_2(g))}+n_{H_2S(g)}\times \Delta G_f^0_{(H_2S(g))}][/tex]
where,
[tex]\Delta G^o[/tex] = standard free energy of reaction = ?
n = number of moles
Now put all the given values in this expression, we get:
[tex]\Delta G^o=[3mole\times (0kJ/mol)+2mole\times (-228.57kJ/mol)]-[1mole\times (-300.4kJ/mol)+2mole\times (-33.01kJ/mol)][/tex]
[tex]\Delta G^o=-90.72kJ/mol[/tex]
Now we have to calculate the value of [tex]K_p[/tex]
[tex]\Delta G^o=-RT\ln K_p[/tex]
where,
[tex]\Delta G_^o[/tex] = standard Gibbs free energy = -90.72 kJ/mol
R = gas constant = 8.314 J/mole.K
T = temperature = 298 K
[tex]K_p[/tex] = equilibrium constant = ?
Now put all the given values in this expression, we get:
[tex]-90.72kJ/mol=-(8.314J/mol.K)\times (298K) \ln K_p[/tex]
[tex]K_p=7.98\times 10^{15}[/tex]
Now we have to calculate the value of [tex]K_p[/tex].
The given balanced chemical reaction is,
[tex]SO_2(g)+2H_2S(g)\rightleftharpoons 3S(s)+2H_2O(g)[/tex]
The expression for equilibrium constant will be :
[tex]K_p=\frac{(p_{H_2O})^2}{(p_{H_2S})^2\times (p_{SO_2})}[/tex]
In this expression, only gaseous or aqueous states are includes and pure liquid or solid states are omitted.
Let the equilibrium [tex]SO_2[/tex] pressure be, x
Pressure of [tex]SO_2[/tex] = Pressure of [tex]H_2S[/tex] = x
Now put all the given values in this expression, we get
[tex]7.98\times 10^{15}=\frac{(22)^2}{(x)^2\times (x)}[/tex]
[tex]x=3.93\times 10^{-5}torr[/tex]
Thus, the equilibrium [tex]SO_2[/tex] pressure is, [tex]3.93\times 10^{-5}torr[/tex]