Respuesta :
Answer:
a) Molarity NH3 = 0.307 M
b)Molarity Cu(NH3)4^2+= 0.0100 M
c) [Cu2+] = 2.3 * 10^-13 M
Explanation:
Step 1: Data given
(Kf = 4.8 *10^12)
volume of a 1.10 M CuSO4 = 11.0 mL = 0.011 L
Volume of a 0.350 M NH3 = 1.20 L
Step 2: The balanced equation
Cu2+ + 4NH3 ⇆ Cu(NH3)42+
Step 3: Calculate moles
Moles = molarity * volume
Moles CuSO4 = 1.10 M * 0.011 L
Moles CuSO4 = 0.0121 moles
⇒ For 1 mol CuSO4 we'll have 1 mol Cu^2+
⇒ For 0.0121 moles CuSO4 we have 0.0121 moles Cu^2+
Moles NH3 = 0.350 M * 1.20 L
Moles NH3 = 0.42 moles
Step 3: Initial moles
n(Cu^2+) = 0.0121 moles
n(NH3) = 0.42 moles
n(Cu(NH3)4^2+ = 0 moles
Step 4: Calculate the limiting reactant
For 1 mol Cu^2+ we need 4 moles NH3 to produce 1 mol Cu(NH3)4^2+
Cu^2+ is the limiting reactant. It will completely be consumed (0.0121 moles). NH3 is in excess. There will react 4 * 0.0121 = 0.0484 moles
There will remain 0.42 - 0.0484 = 0.3716 moles
Step 5: Calculate the final molarity of NH3
Molarity = moles / volume
Molarity = 0.3716 moles / 1.211 L
Molarity NH3 = 0.307 M
Step 6: Calculate the final amount of moles Cu(NH3)4^2+
For 1 mol Cu^2+ we need 4 moles NH3 to produce 1 mol Cu(NH3)4^2+
For 0.0121 moles Cu^2+ well have 0.0121 moles Cu(NH3)4^2+
Step 7: Calculate molarity of Cu(NH3)4^2+
Molarity = moles / volume
Molarity = 0.0121 moles / 1.211 L
Molarity Cu(NH3)4^2+= 0.0100 M
Step 8: What is the concentration of Cu2+ in the resulting solution
Kf = [products] / [reactants]
Kf = [Cu(NH3)4^2+] / ([Cu2+] * [NH3] ^4)
[Cu2+] = [Cu(NH3)4^2+] / ( Kf * [NH3]^4)
[Cu2+] = (0.01000 / ( 4.8 *10^12 * 0.307^4)
[Cu2+] = 2.3 * 10^-13 M
Answer:
a) [NH₃ ] = 0.0396 M
b) [Cu(NH₃)₄²⁺] = 0.0099 M
c) [Cu²⁺] = 8.39x10⁻¹⁰ M
Explanation:
Given data:
VCuSO₄ = 11 mL = 0.011 L
[CuSO₄] = 1.1 M
[NH₃] = 0.35 M
VNH₃ = 1.2 L
[tex][CuSO_{4} ]=\frac{1.1*0.011}{0.011+1.2} =0.0099M[/tex]
[tex][NH_{3} ]=\frac{0.35*1.2}{0.011+1.2} =0.347M[/tex]
The chemical reaction is:
Cu²⁺ + 4NH₃ = Cu(NH₃)₄²⁺
I 0.0099 0.347 0
C -0.0099 -4*0.0099 +0.0099
E x 0.0396
The [Cu²⁺] is:
[tex][Cu^{2+} ]= \frac{[Cu(NH_{3})_{4} ^{2+} ] }{Kf*[NH_{3}]^{4} } =\frac{0.0099}{4.8x10^{12}*0.0396^{4} } =8.39x10^{-10} M[/tex]
[NH₃ ] = 0.0396 M
[Cu(NH₃)₄²⁺] = 0.0099 M