Respuesta :
from the equation x^2 - 6x + 7 = 0 , b is equal to -6. The form should become y = (x-(b/2)^2) + c. (b/2)^2 is equal to 9. Hence,
0 = (x - 3)^2 -9 + 7
0 = (x - 3)^2 -2
2 = (x - 3)^2
x should be equal to -1.5858 and -4.4142
0 = (x - 3)^2 -9 + 7
0 = (x - 3)^2 -2
2 = (x - 3)^2
x should be equal to -1.5858 and -4.4142
Answer:
x1 = -1.59
x2 = -4.41
Step-by-step explanation:
The quadratic equation is of the form
[tex]ax^{2}+bx+c=0[/tex]
In the given case, b = 6
We apply the formula
[tex](\frac{b}{2})^{2}=(\frac{6}{2})^{2}=3^{2}=9[/tex]
[tex]x^{2}+6x+7+9-9=0[/tex]
[tex]x^{2}+6x+9+7-9=0[/tex]
[tex](x^{2}+6x+9)-2=0[/tex]
[tex](x+3)(x-3)=2[/tex]
[tex](x+3)^{2}=2[/tex]
Applying square root to both parts of the equation, we get,
[tex]\sqrt{(x+3)^{2}} =\sqrt{2}[/tex]
[tex]x+3=\sqrt{2}[/tex]
[tex]x=\sqrt{2}-3[/tex]
x = ± 1.41 - 3
"x" then has two values:
x1 = 1.41 - 3 = -1.59
x2 = -1.41 - 3 = -4.41
Hope this helps!