Respuesta :
When the function is asked to be shifted to 1 unit to the left, we replace x with x + 1. Hence, f(x) = x3 + 2x2 - 2x + 1; f(x + 1) = (x + 1)^3 + (x + 1)^2 - 2(x + 1) - 5
= (x^3 + 3x^2 + 3x + 1) + (x^2 + 2x + 1) - 2(x + 1) + 1 = x^3 + 3x^2 + x^2 + 3x + 2x - 2x + 1 + 1 - 2 + 1 = x^3 + 4x^2 + 3x + 1
The final equation is x^3 + 4x^2 + 3x + 1
= (x^3 + 3x^2 + 3x + 1) + (x^2 + 2x + 1) - 2(x + 1) + 1 = x^3 + 3x^2 + x^2 + 3x + 2x - 2x + 1 + 1 - 2 + 1 = x^3 + 4x^2 + 3x + 1
The final equation is x^3 + 4x^2 + 3x + 1
we have
[tex]f(x)=x^3+x^2-2x+1[/tex]
we know that
if f(x) is shifted to the left [tex]1[/tex] unit
then
the rule of the translation is
[tex]f(x)-------> g(x)[/tex]
[tex](x,y)-------> (x-1,y)[/tex]
the resulting function will be
[tex]g(x)=(x+1)^3+(x+1)^2-2(x+1)+1[/tex]
using a graphing tool
see the attached figure to better understand the problem
therefore
the answer is
[tex]g(x)=(x+1)^3+(x+1)^2-2(x+1)+1[/tex]
