Respuesta :
The inverse function of the function f(x) = mx + b can be determined by expressing the function in terms of x alone. hence, (y - b)/m = x. Then we exhange x and y, to result to (x - b)/m = y. In this case, m is not equal to zero. The answer to this problem hence is A>
we have
[tex]f(x)=mx+b[/tex]
Find the inverse of f(x)
Let
[tex]y=f(x)[/tex]
[tex]y=mx+b[/tex]
Exchanges the variables x for y and y for x
[tex]x=my+b[/tex]
isolate the variable y
[tex]my=x-b[/tex]
[tex]y=\frac{x-b}{m}[/tex]
Let
[tex]f(x)^{-1} =y[/tex]
[tex]f(x)^{-1}=\frac{x-b}{m}[/tex] -----> inverse function
Hence
In the inverse function the denominator can not be zero, therefore the value of m can not be equal zero
the answer is the option
[tex]m\neq 0[/tex]