Respuesta :
The chemical reactions involved are:
CH4 + 2 O2 → CO2 + 2 H2O
C3H8 + 5 O2 → 3 CO2 + 4 H2O
Moles of gases = 5.04 L ( 1 mol / 22.41 L ) = 0.22 mol gases
Moles C in CO2 produced = 15.0 g CO2 ( 1 mol CO2 / 44.01 g CO2 ) (1 mol C/1 mol CO2)= 0.34 mol C
Let x be the molar fraction of CH4 in the mixture so 1-x is the molar fraction of C3H8 in the mixture.
We set up a C balance:
0.34083 mol C = (0.22 mol)(x) (1 mol C / 1 mol CH4) + (0.22 mol) (1-x) (3 mol C / 1 mol C3H8)
x = 0.74 methane
1-x = 0.26 propane
CH4 + 2 O2 → CO2 + 2 H2O
C3H8 + 5 O2 → 3 CO2 + 4 H2O
Moles of gases = 5.04 L ( 1 mol / 22.41 L ) = 0.22 mol gases
Moles C in CO2 produced = 15.0 g CO2 ( 1 mol CO2 / 44.01 g CO2 ) (1 mol C/1 mol CO2)= 0.34 mol C
Let x be the molar fraction of CH4 in the mixture so 1-x is the molar fraction of C3H8 in the mixture.
We set up a C balance:
0.34083 mol C = (0.22 mol)(x) (1 mol C / 1 mol CH4) + (0.22 mol) (1-x) (3 mol C / 1 mol C3H8)
x = 0.74 methane
1-x = 0.26 propane
Answer: The mole fraction of methane is 0.67 and that of propane is 0.33
Explanation:
- The equation given by ideal gas follows:
[tex]PV=nRT[/tex]
where,
P = pressure of the mixture = 1.00 atm
V = Volume of the mixture = 5.04 L
T = Temperature of the mixture = [tex]0^oC=[0+273]K=273K[/tex]
R = Gas constant = [tex]0.0821\text{ L. atm }mol^{-1}K^{-1}[/tex]
n = number of moles of mixture = ?
Putting values in above equation, we get:
[tex]1.00atm\times 5.04L=n_{mix}\times 0.0821\text{ L atm }mol^{-1}K^{-1}\times 273K\\n_{mix}=\frac{1.00\times 5.04}{0.0821\times 273}=0.225mol[/tex]
Let the number of moles of methane be 'x' moles and that of propane be 'y' moles
So, [tex]x+y=0.225[/tex] .....(1)
- The chemical equation for the combustion of methane follows:
[tex]CH_4+2O_2\rightarrow CO_2+2H_2O[/tex]
By Stoichiometry of the reaction:
1 mole of methane produces 1 mole of carbon dioxide
So, 'x' moles of methane will produce = [tex]\frac{1}{1}\times x=x[/tex] moles of carbon dioxide
- The chemical equation for the combustion of propane follows:
[tex]C_3H_8+5O_2\rightarrow 3CO_2+4H_2O[/tex]
By Stoichiometry of the reaction:
1 mole of propane produces 3 mole of carbon dioxide
So, 'y' moles of propane will produce = [tex]\frac{1}{1}\times y=y[/tex] moles of carbon dioxide
- Evaluating mass of carbon dioxide:
Total moles of carbon dioxide = (x + 3y)
Mass of carbon dioxide = (Total moles) × (Molar mass of carbon dioxide)
Molar mass of carbon dioxide = 44 g/mol
Mass of carbon dioxide = [tex](x+3y)\times 44[/tex]
We are given:
Mass of carbon dioxide = 16.5 g
So, [tex]44(x+3y)=16.5[/tex] .....(2)
Putting value of 'x' from equation 1, in equation 2, we get:
[tex]44(0.225-y+3y)=16.5\\\\0.225+2y=0.375\\\\y=\frac{0.15}{2}=0.075[/tex]
Evaluating value of 'x' from equation 1, we get:
[tex]x+0.075=0.225\\x=0.15[/tex]
- Mole fraction of a substance is given by:
[tex]\chi_A=\frac{n_A}{n_A+n_B}[/tex]
For Methane:
Moles of methane = 0.15 moles
Total moles = 0.225
Putting values in above equation, we get:
[tex]\chi_{(Methane)}=\frac{0.15}{0.225}=0.67[/tex]
For Propane:
Moles of propane = 0.075 moles
Total moles = 0.225
Putting values in above equation, we get:
[tex]\chi_{(Propane)}=\frac{0.075}{0.225}=0.33[/tex]
Hence, mole fraction of methane is 0.67 and that of propane is 0.33