In △PQR, find the measure of ∡P.
A 30.4°
B 35.9°
C 59.6°
D 54.1°

Answer:
Option B is correct.
the measure of ∡P is, 35.9°
Step-by-step explanation:
Using sine ratio:
[tex]\sin \theta = \frac{\text{Opposite side}}{\text{Hypotenuse side}}[/tex] ....[1]
As per the statement:
In the given diagram △PQR:
Opposite side = QR = 33.8 units
Hypotenuse Side = PR = 57.6 units
Substitute in [1] we have;
[tex]\sin \angle P = \frac{33.8}{57.6} = 0.586805556[/tex]
⇒[tex]\angle P = \sin^{-1} (0.586805556)[/tex]
Simplify:
[tex]\angle P= 35.93064694[/tex] degree
Therefore, the measure of angle P is, 35.9°