Given the following functions f(x) and g(x), solve f over g(−4) and select the correct answer below:

f(x) = 4x − 4

g(x) = x − 1
−20
−4
4
one fourth

Respuesta :

[tex]\left(\dfrac{f}{g}\right)(x)=\dfrac{f(x)}{g(x)}\\\\f(x)=4x-4;\ g(x)=x-1\\\\f(-4)=4\cdot(-4)-4=-16-4=-20\\\\g(-4)=-4-1=-5\\\\\left(\dfrac{f}{g}\right)(x)=\dfrac{-20}{-4}=4[/tex]

Answer:

Third option is correct.

Step-by-step explanation:

The given function are

[tex]f(x)=4x-4[/tex]

[tex]g(x)=x-1[/tex]

We have to find the value of [tex](\frac{f}{g})(-4)[/tex].

[tex](\frac{f}{g})(-4)=\frac{f(-4)}{g(-4)}[/tex]

Substitute x=-4 in both functions.

[tex]f(-4)=4(-4)-4=-20[/tex]

[tex]g(-4)=(-4)-1=-5[/tex]

[tex]\frac{f(-4)}{g(-4)}=\frac{-20}{-5}=4[/tex]

Therefore option 3 is correct and the value of [tex](\frac{f}{g})(-4)[/tex] is 4.