1. Identify the vertical asymptotes of f(x) = 2/x^2+3x-10
2. Identify the vertical asymptotes of f(x) = x+6/x^2-9x +18
3. Identify the horizontal asymptote of f(x) =4x/7
4. Identify the horizontal asymptote of f(x) = 7x+1/2x-9
5. Identify the horizontal asymptote of f(x) = x^2+5x-3/4x-1
6. Identify the oblique asymptote of f(x) = x^2-4x+8 /x+2
7.Identify the oblique asymptote of f(x) = 2x^2+3x+8/x+3
8.Identify the oblique asymptote of f(x) = x+4/3x^2+5x-2
9. Identify the oblique asymptote of f(x) =4x^2-x+2/x+1

Respuesta :

1)Vertical asymptote is x=0
2)
f(x) = 2/(x² + 3x - 10) = 2 / [(x + 5)(x - 2)] 
Vertical asymptotes are x=2 and x=-5. 
3)It's a linear function, just a line, with a slope of 4/7 and a y-intercept of 0 because b=0.the degree of the numerator is 1 and the degree of the denominator is 0. 1>0 so we do not have any horizontal asymptotes.
4)
 y = (7x+1)/(2x-9) 
2xy - 9y = 7x + 1 
2xy - 7x = 9y+1 
x = (9y + 1) / (2y - 7) 
y=7/2
5)
6)
, y=x−6 is your oblique asymptote
7)
 line y=2x−3
8)
There is a horizontal asymptote and two vertical asymptotes though. 
They are y=0,x=13,andx=−2
9)
The oblique or slant asymptote is 4x−5.

Answer:

1.Vertical asymptotes are at x=-5 and x=2 .

2.Vertical asymptotes are at x=6 and x=3.

3.No , horizontal asymptotes.

4.Horizontal asymptote [tex] y=\frac{7}{2}[/tex].

5.No, horizontal asymptote.

6.Oblique asymptote at [tex] y= x-6 [/tex].

7.Oblique asymptote at y=2x-3

8.There is no oblique asymptote.

9.Oblique asymptote y=4x-5.

Step-by-step explanation:

1. To find vertical asymptote

Substitute denominator is equal to zero

Therefore, [tex]x^2+3x-10=0[/tex]

Factorize the polynomial we get

[tex](x+5)(x-2)=0[/tex]

[tex] x+5=0 [/tex] and [tex] x-2=0[/tex]

[tex] x=-5[/tex] and [tex] x=2[/tex]

Hence, the vertical asymptote of f(x) at x= -5 and x=2

2.[tex] x^2-9x+18=0[/tex]

Fatorize the polynomial then we get

[tex] (x-6)(x-3)=0[/tex]

[tex]x-6=0[/tex] and [tex]x-3=0[/tex]

[tex] x=6 [/tex] and [tex]x=3[/tex].

Therefore, the vertical asymptote of f(x) at x=6 and x=3

3.There is no horizontal asymptote of f(x) because the degree of numerator is greater than the degree of denominator.

4.Horizontal asymptote : The degree of numerator and degree of denominator are same therefore,

Horizontal asymptote=[tex]\frac{7}{2}[/tex].

5.No horizontal asymptote because the degree of numerator is greater than the degree of denominator.

6.Oblique asymptote: oblique asymptote is  the value of quotient which obtained by dividing the numerator by denominator .

Oblique asymptote of f(x) at y=x-6

7. Oblique asymptote of f(x) at y= 2x-3

8. There is no oblique asymptote because the degree of numerator is less than the degree of denominator.

9.Oblique asymptote of f(x) at y= 4x-5

Ver imagen lublana
Ver imagen lublana
Ver imagen lublana