Respuesta :
the range equation is R=v0^2 sin(2t)/g where I use t for theta
so, take the ratio of Rmax to R:
Rmax/R = v0^2 sin(2*45)/g / v0^2sin(2t)/g
the v0 and g terms cancel, sin 90=1, leaving
Rmax/R = 1/sin(2t) or Rmax = R/sin(2t)
that would help
so, take the ratio of Rmax to R:
Rmax/R = v0^2 sin(2*45)/g / v0^2sin(2t)/g
the v0 and g terms cancel, sin 90=1, leaving
Rmax/R = 1/sin(2t) or Rmax = R/sin(2t)
that would help
Answer:
(a) Θ = [tex]75.96^{0}[/tex]
(b) [tex]R_{max}[/tex] is achieved when T = [tex]45^{0}[/tex], thus [tex]R_{max}[/tex] = R ÷ Sin2T
(c) Yes
Explanation:
(a) Max. height ([tex]H_{max}[/tex]) = [tex]\frac{U^{2}Sin^{2}T}{2g}[/tex]
Range (R) = [tex]\frac{U^{2}Sin 2T }{g}[/tex]
where T represents theta
So for, R = [tex]H_{max}[/tex]
⇒ [tex]\frac{U^{2}Sin 2T }{g}[/tex] = [tex]\frac{U^{2}Sin^{2}T}{2g}[/tex]
Using trigonometric functions,
[tex]Sin^{2}T[/tex] = 2SinTCosT = [tex]\frac{Sin^{2}T }{2}[/tex]
⇒ 4 = Tan T
T = [tex]Tan^{-1} 4[/tex]
= [tex]75.96^{0}[/tex]
∴ Theta = [tex]75.96^{0}[/tex]
(b) Since, R = [tex]\frac{U^{2}Sin 2T }{g}[/tex]
[tex]R_{max}[/tex] is achieved when T = [tex]45^{0}[/tex]
[tex]R_{max}[/tex] = [tex]\frac{U^{2}Sin 2T }{g}[/tex]
∴ [tex]R_{max}[/tex] = R ÷ Sin2T