Respuesta :

[tex]x^2-3x-1=0\\a=1;\ b=-3;\ c=-1\\\\\Delta=b^2-4ac\\\Delta=(-3)^2-4\cdot1\cdot(-1)=9+4=13 \ \textgreater \ 0\\\\x_1=\dfrac{-b-\sqrt\Delta}{2a}\ and\ x_2=\dfrac{-b+\sqrt\Delta}{2a}\\\\\sqrt\Delta=\sqrt{13}\\\\x_1=\dfrac{-(-3)-\sqrt{13}}{2\cdot1}=\dfrac{3-\sqrt{13}}{2}\\\\x_2=\dfrac{-(-3)+\sqrt{13}}{2\cdot1}=\dfrac{3+\sqrt{13}}{2} [/tex]

Answer:

[tex]x_{1}=\frac{-3+\sqrt{13} }{2}\\[/tex]

[tex]x_{2}=\frac{-3-\sqrt{13} }{2}\\[/tex]

Step-by-step explanation:

the equation is: [tex]x^2-3x-1=0[/tex]

you have a quadratic equation of the form:

[tex]ax^2+bx+c=0[/tex]

where [tex]a=1,b=-3,c=-1[/tex]

this can be solved using the general formula:

[tex]x=\frac{-b+-\sqrt{b^2-4ac} }{2a}[/tex]

substituting all the known values:

[tex]x=\frac{-(-3)+-\sqrt{(-3)^2-4(1)(-1)} }{2(1)} \\x=\frac{-3+-\sqrt{9+4} }{2}\\ x=\frac{-3+-\sqrt{13} }{2}\\[/tex]

one value for x will be found using the plus sign before the square root:

[tex]x_{1}=\frac{-3+\sqrt{13} }{2}\\[/tex]

and the other will be found using the negative sign before the square root:

[tex]x_{2}=\frac{-3-\sqrt{13} }{2}\\[/tex]