Answer:
Option D
[tex]3x-2y\leq 7[/tex]
Step-by-step explanation:
Let
[tex]A(-3,-8),B(1,-2)[/tex]
Find the slope of the line
[tex]m=\frac{-2+8}{1+3}[/tex]
[tex]m=\frac{3}{2}[/tex]
Find the equation of the line
[tex]y-y1=m(x-x1)[/tex]
[tex]y+2=\frac{3}{2}(x-1)[/tex]
[tex]y=\frac{3}{2}x-\frac{3}{2}-2[/tex]
[tex]y=\frac{3}{2}x-\frac{7}{2}[/tex]
The solution is the shaded area above the solid line
so
The inequality is equal to
[tex]y\geq \frac{3}{2}x-\frac{7}{2}[/tex]
Multiply by [tex]2[/tex] both sides
[tex]2y\geq 3x-7\\ \\-3x+2y\geq -7[/tex]--------> multiply by [tex]-1[/tex]
[tex]3x-2y\leq 7[/tex]