Respuesta :
Hello,
Answer B
(√2(cos(20°) + isin(20°))^6 =8*(cos 120°+isin120°)
=8*(-1/2+i√3/2)
=4(-1+i√3)
Answer B
(√2(cos(20°) + isin(20°))^6 =8*(cos 120°+isin120°)
=8*(-1/2+i√3/2)
=4(-1+i√3)
Answer:
Option B is correct
[tex] -4+ 4\sqrt{3}i[/tex]
Step-by-step explanation:
Given the complex number:
[tex](\sqrt{2}(\cos(20^{\circ})+i\sin(20^{\circ})))^6[/tex]
Using D-Moivre's theorem:
if p is the rational; number:
[tex](\cos \theta +i\sin \theta)^p = \cos p\theta +i\sin\theta[/tex]
then;
Using D-Moivre's theorem:
[tex](\sqrt{2})^6(\cos(6 \cdot 20^{\circ})+i\sin(6 \cdot 20^{\circ}))[/tex]
[tex]8((\cos(120^{\circ})+i\sin(120^{\circ}))[/tex]
[tex]8(-\frac{1}{2}+i \frac{\sqrt{3}}{2}) = -4+ 4\sqrt{3}i[/tex]
Therefore, the given complex in the standard form is [tex] -4+ 4\sqrt{3}i[/tex]