which classification best describes the following system of equations?

x-y-z=0
2x-y 2z=1
x-y z=-2

a: inconsistent and dependent
b: consistent and dependent
c: consistent and independent
d:inconsistent and independent

Respuesta :

inconsistent and dependent

Answer:

The correct option is c.

Step-by-step explanation:

The given equations are

[tex]x-y-z=0[/tex]                  .... (1)

[tex]2x-y+2z=1[/tex]             ..... (2)

[tex]x-y+z=-2[/tex]               .... (3)

Subtract equation (3) form equation (1).

[tex]-2z=2[/tex]

[tex]z=-1[/tex]

The value of z is -1. Put this value in equation (1) and (2).

[tex]x-y-(-1)=0[/tex]

[tex]x-y=-1[/tex]                .... (4)

[tex]2x-y+2(-1)=1[/tex]

[tex]2x-y=3[/tex]            ..... (5)

Subtract equation (5) from equation (4).

[tex]x=4[/tex]

[tex]y=5[/tex]

The solution of given system of equations is (4,5,-1). It is a unique solution.

Therefore the given system of equations is consistent and independent. Option c is correct.