Respuesta :
x^2 - 5x - 7 = 0
x = (-b (+-) b^2 - 4ac) / 2a
a = 1, b = -5, c = -7
x = (-(-5) (+-) sqrt (-5^2) -4(1)(-7)) / 2(1)
x = (5 (+-) sqrt 25 + 28) / 2
x = (5 (+-) sqrt 53) / 2
x = (-b (+-) b^2 - 4ac) / 2a
a = 1, b = -5, c = -7
x = (-(-5) (+-) sqrt (-5^2) -4(1)(-7)) / 2(1)
x = (5 (+-) sqrt 25 + 28) / 2
x = (5 (+-) sqrt 53) / 2
The exact solution of x is [tex]x = \frac{5 \pm \sqrt{53}}{2}[/tex]
How to determine the exact solution?
The equation is given as:
x^2 - 5x - 7 = 0
The solution is then calculated as:
[tex]x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}[/tex]
So, we have:
[tex]x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4 * 1 * -7}}{2 *1}[/tex]
Evaluate the exponents and the products
[tex]x = \frac{5 \pm \sqrt{53}}{2}[/tex]
Hence, the exact solution of x is [tex]x = \frac{5 \pm \sqrt{53}}{2}[/tex]
Read more about quadratic equations at:
https://brainly.com/question/1214333
#SPJ5