what are the exact solutions of x2 − 5x − 7 = 0?

x = the quantity of negative 5 plus or minus the square root of 3 all over 2

x = the quantity of 5 plus or minus the square root of 3 all over 2

x = the quantity of negative 5 plus or minus the square root of 53 all over 2

x = the quantity of 5 plus or minus the square root of 53 all over 2

Respuesta :

x^2 - 5x - 7 = 0

x = (-b (+-) b^2 - 4ac) / 2a
a = 1, b = -5, c = -7

x = (-(-5) (+-) sqrt (-5^2) -4(1)(-7)) / 2(1)
x =  (5 (+-) sqrt 25 + 28) / 2
x = (5 (+-) sqrt 53) / 2

The exact solution of x is [tex]x = \frac{5 \pm \sqrt{53}}{2}[/tex]

How to determine the exact solution?

The equation is given as:

x^2 - 5x - 7 = 0

The solution is then calculated as:

[tex]x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}[/tex]

So, we have:

[tex]x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4 * 1 * -7}}{2 *1}[/tex]

Evaluate the exponents and the products

[tex]x = \frac{5 \pm \sqrt{53}}{2}[/tex]

Hence, the exact solution of x is [tex]x = \frac{5 \pm \sqrt{53}}{2}[/tex]

Read more about quadratic equations at:

https://brainly.com/question/1214333

#SPJ5