Respuesta :

[tex]\sqrt{9x^2}=3|x|\\\\\sqrt{18y^2}=\sqrt{9\cdot2}|y|=3|y|\sqrt2\\\\therefore:\\\\\sqrt{9x^2}:\sqrt{18y^2}=\dfrac{3|x|}{3|y|\sqrt2}=\dfrac{|x|}{|y|\sqrt2}\cdot\dfrac{\sqrt2}{\sqrt2}=\dfrac{|x|\sqrt2}{2|y|}[/tex]

Answer:√2x/2y

Step-by-step explanation:

By indices,

√9x²/√18y²

= (√9 × √x²)/ (√18 × √y²)

= (3 × x)/{(√2×9) × y}

= 3x/3√2y

= x/√2y

Rationalizing this,

x/√2y × √2/√2

= √2x/2y.