Respuesta :

[tex](1.7\times10^{-13})\times(3.5\times10^{25})=(1.7\times3.5)(10^{-13}\times10^{25})\\\\=5.95\times10^{-13+25}=5.95\times10^{12}\\\\\\Answer:\boxed{5.95\times10^{12}}[/tex]

ANSWER

[tex]3.95 \times {10}^{12} [/tex]

EXPLANATION

The first number is

[tex]1.7 \times {10}^{ - 13} [/tex]

The second number is

[tex]3.5 \times {10}^{25} [/tex]

The product of the above two numbers is
[tex]1.7 \times {10}^{ - 13} \times 3.5 \times {10}^{25} [/tex]

We regroup the numbers to obtain,

[tex](1.7 \times 3.5) \times {10}^{ - 13} \times {10}^{25} [/tex]

We now multiply out the expression in the bracket to obtain,

[tex]3.95 \times {10}^{ - 13} \times {10}^{25} [/tex]

Recall also that,

[tex] {a}^{m} \times {a}^{n} = {a}^{m + n}[/tex]

We apply this property to obtain,

[tex]3.95 \times {10}^{ - 13 + 25} [/tex]

This finally simplifies to,

[tex]3.95 \times {10}^{12} [/tex]

Therefore the correct answer is D.