Respuesta :
Answer:
B (0, 14) and (10, 1)
Step-by-step explanation:
Option A: (0, 14) and (10, 14)
Equation of line using two point slope form .
[tex]y-y_1=\frac{y_2-y_1}{x_2-x_1}(x-x_1)[/tex]
[tex](x_1,y_1)=(0,14)[/tex]
[tex](x_2,y_2)=(10,14)[/tex]
Substitute values in formula :
[tex]y-14=\frac{14-14}{`10-0}(x-0)[/tex]
[tex]y-14=0(x-0)[/tex]
[tex]y=14[/tex]
Option B : (0, 14) and (10, 1)
Equation of line using two point slope form .
[tex]y-y_1=\frac{y_2-y_1}{x_2-x_1}(x-x_1)[/tex]
[tex](x_1,y_1)=(0,14)[/tex]
[tex](x_2,y_2)=(10,1)[/tex]
Substitute values in formula :
[tex]y-14=\frac{1-14}{`10-0}(x-0)[/tex]
[tex]y-14=\frac{-13}{10}(x-0)[/tex]
[tex]y=\frac{-13}{10}x+14[/tex]
Option C: (0, 7) and (7, 0)
Equation of line using two point slope form .
[tex]y-y_1=\frac{y_2-y_1}{x_2-x_1}(x-x_1)[/tex]
[tex](x_1,y_1)=(0,7)[/tex]
[tex](x_2,y_2)=(7,0)[/tex]
Substitute values in formula :
[tex]y-7=\frac{0-7}{`7-0}(x-0)[/tex]
[tex]y-7=\frac{-7}{7}(x)[/tex]
[tex]y= -x+7[/tex]
Option D: (0, 7) and (3, 0)
Equation of line using two point slope form .
[tex]y-y_1=\frac{y_2-y_1}{x_2-x_1}(x-x_1)[/tex]
[tex](x_1,y_1)=(0,7)[/tex]
[tex](x_2,y_2)=(3,0)[/tex]
Substitute values in formula :
[tex]y-7=\frac{0-7}{`3-0}(x-0)[/tex]
[tex]y-7=\frac{-7}{3}(x)[/tex]
[tex]y=\frac{-7}{3}(x)+7[/tex]
Now after plotting all the lines of given options on the graph of scatter plot we can see that the blue line [tex]y=\frac{-13}{10}x+14[/tex] of Option B the is the line of best fit for this scatter plot Since it is covering almost all ordered pairs of scatter plot.
Hence two ordered pairs can be joined to best draw the line of best fit for this scatter plot are (0, 14) and (10, 1)
Option B is correct.

Answer:
The answer is B: (0, 14) and (10, 1)
Step-by-step explanation: