Respuesta :
Answer:
A quadratic equation [tex]ax^2+bx+c = 0[/tex] ,....[1] then the solution of this is given by:
[tex]x = \frac{-b \pm \sqrt{b^2-4ac} }{2a}[/tex] ....[2]
Given the quadratic equation:
[tex]x^2=5x+2[/tex]
We can write this as:
[tex]x^2-5x-2 =0[/tex]
On comparing with [1] we have;
a = 1, b = -5 and c = -2
Substitute these in [2] we have
[tex]x = \frac{-(-5) \pm \sqrt{(-5)^2-4(1)(-2)} }{2(1)}[/tex]
⇒[tex]x = \frac{5 \pm \sqrt{25+8} }{2}[/tex]
Simplify:
[tex]x = \frac{5 \pm \sqrt{33} }{2}[/tex]
Therefore, the exact solutions of the given equations are:
[tex]x = \frac{5+\sqrt{33} }{2}[/tex] and [tex]x = \frac{5 -\sqrt{33} }{2}[/tex]
Answer:
5+ square root of 33 over 2 (A)
Step-by-step explanation:
i just took the test and got it right!