Respuesta :

Answer:

A quadratic equation [tex]ax^2+bx+c = 0[/tex]   ,....[1] then the solution of this is given by:

[tex]x = \frac{-b \pm \sqrt{b^2-4ac} }{2a}[/tex]          ....[2]

Given the quadratic equation:

[tex]x^2=5x+2[/tex]

We can write this as:

[tex]x^2-5x-2 =0[/tex]

On comparing with [1] we have;

a = 1, b = -5 and c = -2

Substitute these in [2] we have

[tex]x = \frac{-(-5) \pm \sqrt{(-5)^2-4(1)(-2)} }{2(1)}[/tex]

⇒[tex]x = \frac{5 \pm \sqrt{25+8} }{2}[/tex]

Simplify:

[tex]x = \frac{5 \pm \sqrt{33} }{2}[/tex]

Therefore, the exact solutions of the given equations are:

[tex]x = \frac{5+\sqrt{33} }{2}[/tex] and [tex]x = \frac{5 -\sqrt{33} }{2}[/tex]

Answer:

5+ square root of 33 over 2 (A)

Step-by-step explanation:

i just took the test and got it right!