Answer:
(D) Decrease in width of 2.18 x [tex]10^{-6[/tex]m
Explanation:
Given:
force 'F'= 60,000 N
elastic modulus 'E' = 207 GPa => 2.07 x [tex]10^{11[/tex]N/m²
cross section area ' [tex]A_{0}[/tex]'= 20 mm x 40 mm => 800mm² =>8 x [tex]10^{-4}[/tex] m²
∈z = б/E => (F/ [tex]A_{0}[/tex])/E => F/ [tex]A_{0}[/tex]E
∈z = 60,000/(8 x [tex]10^{-4}[/tex] x 2.07 x [tex]10^{11[/tex])
∈z =3.62 x [tex]10^{-4}[/tex]
Lateral strain is given by,
∈x= -v∈z => -(0.30)(3.62 x [tex]10^{-4}[/tex])
∈x=1.09 x [tex]10^{-4}[/tex]
Next is to calculate the change in width
ΔW= Wo x ∈x =>20 x 1.09 x [tex]10^{-4}[/tex]
ΔW= -2.18 x [tex]10^{-6[/tex] m
Therefore, the correct option is 'D'