Answer:
a) [tex]T_f=\frac{m_1\lambda_{H20}-m_2c_2T_i}{m_2c_2-m_1c_1}[/tex]
b) 295.52K
Explanation:
a) you use the following formula:
[tex]Q_1+Q_2=Q[/tex]
[tex]-m_2c_2(T_f-T_{i2})-m\lambda_{H20}=m_1c_1(T_f-T_{i1})[/tex] ( 1 )
m2: 0.075kg
m1: 0.89kg
Lf= 33.5 × 104 J/kg
Ti2= 0C=273.15K
Ti1 = 31C = 304.15K
Then, you obtain T from the formula (1):
[tex]T_f=-\frac{m_1\lambda_{H20}-m_1c_1T_{i1}-m_2c_2T_{i2}}{m_2c_2+m_1c_1}[/tex]
[tex]T_f=\frac{m_1\lambda_{H20}-m_2c_2T_i}{m_2c_2-m_1c_1}[/tex]
b) By replacing the values of all parameters you obtain:
[tex]T_f=-\frac{(0.075kg)(33.5*10^4J/kg)-(0.89kg)(4186J/kg.K)(304.15K)-(0.075kg)(4186J/kg.K)(273.15K)}{(0.89kg)(4186J/kg.K)+(0.075kg)(4186J/kg.K)}\\\\T_f=295.52K[/tex]